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Abstract. Ecological interactions between species that prefer different habitat types but
come into contact in edge regions at the interfaces between habitat types are modeled via
reaction-diffusion systems. The primary sort of interaction described by the models is com-
petition mediated by pathogen transmission. The models are somewhat novel because the
spatial domains for the variables describing the population densities of the interacting species
overlap but do not coincide. Conditions implying coexistence of the two species or the extinc-
tion of one species are derived. The conditions involve the principal eigenvalues of elliptic
operators arising from linearizations of the model system around equilibria with only one
species present. The conditions for persistence or extinction are made explicit in terms of the
parameters of the system and the geometry of the underlying spatial domains via estimates
of the principal eigenvalues. The implications of the models with respect to conservation
and refuge design are discussed.

1. Introduction

Diseases, parasites, and other transmittable pathogens (hereafter “diseases”) are
key components of natural ecological systems, occurring in a wide variety of plant
and animal communities (e.g., Anderson and May 1986, Roelke-Parker et al. 1996,
Laurence et al. 1996). The dynamics of such diseases have long been of interest in
mathematical biology (e.g., Kermack and McEndrick 1927), and recent epidemio-
logical models that incorporate spatial perspectives (e.g., Holmes 1997) continue
to provide new insights.

In conservation biology, scientists are particularly concerned with the influ-
ences of diseases on the persistence or extinction of threatened species. Particular
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emphasis is often directed at understanding the roles of “reservoir species,” those
species that, through their great abundance and/or immunity to a disease, facilitate
persistence of the disease within a region of habitat. The role of reservoir species
is often a critical one, because populations of rare species (which might otherwise
be too small to permit establishment of diseases on their own) may face added ex-
tinction risks via infections of various sorts spread through contact with members
of reservoir populations (e.g., Begon et al. 1992, Lyles and Dobson 1993). In many
cases, domestic animals may serve as disease reservoirs, and their contacts with
wild species may facilitate the spread of disease into nature reserves and other areas
(Roelke-Parker et al. 1996, MacDonald 1996).

Through their impacts on interspecific disease transmission, habitat edges can
strongly influence species interactions, including the transmission of pathogens
(Fagan et al. 1999). For example, increased edginess of forests in the Northeast
US and Canada has been implicated as a key factor influencing the transmission
of brainworm infections from white-tailed deer (a common species in which the
effects of infection are relatively benign), to other, less common, animals such as
moose, woodland caribou, and elk, where the infections can be lethal (Anderson
1972, Holmes 1996). Remnant Puerto Rican rainforests feature a similar interaction
wherein parasitic botflies are transmitted to forest interior species like the endan-
gered Puerto Rican parrot through contacts with reservoir species at forest-matrix
edges (Snyder et al. 1987, Loye and Carroll 1995). Habitat edges also play a role in
the transmission of human diseases. For example, in New England, ticks capable of
spreading Lyme disease are common in forest-lawn edges (Duffy et al. 1994) but
have low survivorship in the lawn areas themselves, which feature more variable
climatic conditions (Bertrand and Wilson 1996).

From a different perspective, the ongoing debate regarding the disease brucel-
losis, American bison, and cattle ranches outside Yellowstone National Park is also
a case involving edge-mediated disease transmission (e.g., Meagher and Meyer
1994, Dobson and Meagher 1996, Wilkinson 1998). In that system, individuals
working under the authority of the Montana Fish, Wildlife, and Parks department
are permitted to kill bison dispersing outside the park boundaries because the bison
population is known to harbor Brucella abortus, a bacterium that causes brucellosis
and can cause ranch cows to abort developing fetuses. On the other hand, many en-
vironmentalists are concerned that continued killing of bison at the park boundary
will endanger the Yellowstone population, especially when bad wheather and/or low
resource availability promote high levels of bison emigration (Turbak 1995, Wood-
bury 1997, Wilkinson 1998). Epidemiological analyses by Dobson and Meagher
(1996) suggest that the level of bison culling required to eliminate Brucella from the
Yellowstone bison population could also cause extinction of the bison population.

The brucellosis, botfly, and brainworm examples all involve reservoir species
that are mostly or at least partially segregated in space from populations of other host
species. Despite their spatial segregation, such reservoir species can have negative
(but indirect) effects on other host species through the transmission of pathogens.
Consequently, the arrangement of species interactions involved in edge-mediated
pathogen transmission is in many ways similar to those of other classes of indirect
effects (in particular, apparent competition mediated by a mutual predator [e.g.,
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Holt and Lawton 1993, 1994]), but feature a critical spatial complication. This is
perhaps most clear in the case of the brainworm in which there is some evidence for
a gradual replacement of susceptible cervid species by more resistant deer popula-
tions invading from the south (Anderson 1972; see also Schmitz and Nudds 1994).

A spatially explicit model of such a host-pathogen-reservoir system would be
complicated. However, investigations become more tractable if we make some rea-
sonable simplifying assumptions about the dynamics of the three-species system.
Below, we present alternative formal derivations that allow us to recast a three-
species disease model as a two species competition model, representing (indirectly
mediated) competition between host and reservoir species. Clearly this simplifica-
tion will not capture all of the intricacies of full system’s dynamics, but it greatly
facilitates study of edge-mediated pathogen transmission, which appears central
to the empirical examples motivating our work. Specifically, we use a system of
diffusive Lotka-Volterra competition equations to represent the spatial dynamics
of two species that suffer from the same disease and have some fraction of their
habitats in common.

2. Formulation of the models

We are interested in scenarios where two species are affected by the same pathogen
but where one species acts as a reservoir for the pathogen and transmits it to the
other species. Let us denote the species which acts as a reservoir for the pathogen as
species 2 and the species to which the pathogen is transmitted as species 1. We shall
assume that in species 2 the effects of the pathogen are relatively benign, where-
as in species 1 the effects are more severe. In particular, we assume that infected
individuals of species 1 do not transmit the pathogen back to species 2 or engage
in ecological interactions to any significant degree. This would be the case if the
pathogen were quickly lethal to species 1, or if species 1 were closely managed
and infected individuals quarantined, among other possible scenarios. Hence, we
shall be concerned with the infected members of species 1 only to the extent that
their removal from the population influences the persistence of species 1. However,
we must account for the infected members of species 2 because they represent the
source of infection in species 1 and they may engage in ecological interactions. In
addition to the assumptions stated above, we shall also assume that the timescale
for transmission of the pathogen is fast relative to the timescale for population
dynamics in the absence of the pathogen.

To obtain models which are sufficiently tractable as to allow the analysis of
spatial effects we shall start with a nonspatial model for two competing popula-
tions which both are affected by a pathogen and show how either the nature of the
questions we want to ask or the assumptions we want to make about our system
allow us to reduce the models to simpler forms. Let Si denote the density of individ-
uals of species i which are uninfected by the pathogen. We shall assume that such
individuals are susceptible to the pathogen. Let Ii denote the density of individuals
of species i which are infected by the pathogen, and let Pi = Si + Ii . A reason-
ably general but simple model which embodies some of the assumptions stated
above is
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dS1

dt
= [A1 − B11S1 − B12P2]S1 − C11I1S1 − C12I2S1

dI1

dt
= (C1I1 + C2I2)S1 −M1I1

(2.1)dS2

dt
= A2S2 + A3I2 − [B21S1 + B22P2]S2 − C22I2S2

dI2

dt
= C22I2S2 − [B21S1 + B22P2]I2 −M2I2

(See for example Anderson and May 1986, Begon et al. 1992.) In (2.1) all of the
coefficients are assumed to be constants except possibly the coefficientsCi2, which
may be constant or may have the form Ci2 = ci2/P2 depending on detailed as-
sumptions about the way the pathogen is transmitted among the population that
harbors it. The termM1I1 in the second equation should be viewed simply as mor-
tality. The termM2I2 in the fourth equation may include components of mortality
and recovery. The term A3I2 in the third equation could reflect recovery from the
pathogen or could reflect the birth of healthy offspring from infected individuals.
The model assumes that infected adults do not produce infected offspring; that is,
in epidemiological terminology, there is no vertical transmission of the pathogen.
The system (2.1) can be viewed as a Lotka-Volterra competition model augmented
with a standard type of epidemic model for the pathogen; see (Murray 1993) for
discussions of population and epidemic models, (Kermack and McKendric 1927)
for epidemic models, and (Anderson and May 1986) for both together.

2.1. First reduction: the viewpoint of persistence

We are primarily interested in predictions of persistence and extinction of popula-
tions, so we shall examine our models from the viewpoint of persistence theory, as
discussed in (Hutson and Schmitt 1992, Cantrell et al. 1993a,b, 1996, Cosner 1994).
Roughly speaking, the theoretical prediction of persistence for a system such as (2.1)
is based on the invasibility of the system by populations at low densities. In other
words, persistence theory provides a formal mathematical version of the idea that
invasibility implies coexistence. In applying persistence theory to (2.1), the deter-
mination of persistence of species 1 would be based on the stability or instability
with respect to invasion by species 1 of steady states where species 1 is not present.
Notice that I1 must be zero in any steady state of (2.1) where S1 is zero, and that I1
cannot increase when S1 is small. (All the positive terms in dI1/dt have S1 as a fac-
tor.) Thus, at those steady states which are relevant to determining the persistence of
species 1, which are precisely those with S1 = 0, we also have I1 = 0 and hence the
presence or absence of an explicit I1 term in the model is irrelevant. Another way to
understand this point is to consider the simpler epidemic model which would occur
if I2 and S2 were held fixed. The model for S1 and I1 would then take the form

dS1

dt
= (A− BS1)S1 − CS1I1 −DS1

(2.2)
dI1

dt
= CS1I1 +DS1 −M1I1
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with A,B,C,D depending on the coefficients of (2.1) and the set values of S2 and
I2. A phase plane analysis of (2.2) shows that the model predicts persistence of S1
if and only ifA−D > 0. The term −CS1I1 is irrelevant. (The reason for this is that
I1 is a state variable which becomes small if S1 becomes small.) For a discussion
of how to perform a phase plane analysis see (Murray 1993). The same conclusion
about (2.2) also follows from formal persistence theory. See (Hutson and Schmitt
1992.) Because the terms involving I1 do not affect the prediction of persistence of
species 1 we will drop them from further consideration. (The presence or absence
of the I1 terms may affect the predicted equilibrium density of species 1 but not
the prediction of persistence.)

2.2. Second reduction: biological hypotheses

If we consider only the terms of (2.1) that do not involve I1 we get

dS1

dt
= [A1 − B11S1 − B12P2]S1 − C12I2S1

dS2

dt
= A2S2 + A3I2 − [B21S1 + B22P2]S2 − C22I2S2 (2.3)

dI2

dt
= C22I2S2 − [B21S1 + B22P2]I2 −M2I2.

We shall always assume that the dynamics of the pathogen are fast relative to the rest
of the system, so that we can use a pseudo-equilibrium hypothesis to assume that
I2 tracks S2 and S1. This makes sense in terms of the coefficients if C22 is large.
The detailed form of the resulting system depends on the specific assumptions
built into the model. We shall discuss two scenarios which lead to a Lotka-Volterra
competition model. They differ in details but both embody the assumptions that
the effects of the pathogen on species 2 are mild.

Scenario 1. In this scenario we assume that the pathogen has no ecological impact
on species 2, and that the population of species 2 is homogeneously mixed, so that
the chance of encountering an infected individual is proportional to the number of
infected individuals. Then C22 is a constant, and because infected and uninfected
individuals have the same vital rates,

A2 = (birth rate of uninfected)− (death rate of uninfected)

= (birth rate of infected)− (death rate of infected)

= A3 −M2.

In that case we may add the last two equations in (2.3) to obtain for P2 = S2 + I2
the equation

dP2

dt
= A2P2 − [B21S1 + B22P2]P2 (2.4)

The pseudo equilibrium I ∗
2 is found by setting

dI2

dt
= 0, using S2 = P2 − I2 in the

equilibrium equation

C22S2 − B21S1 + B22P2 −M2 = 0

and solving for I2 to get
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I ∗
2 = [1 − (B22/C22)]P2 − (B21/C22)S1.

We are assuming that C22 is large so that the coefficient of P2 is positive. Substi-
tuting into the equation for S1 yields

dS1

dt
= A1S1−[B11S1 + B12P2]S1 − C11([1 − (B22/C22)]P2 − (B21/C22)S1)S1

= [A1 − [B11 − (C11B21/C22)]S1 − [B12 + C11(1 − (B22/C22))]P2]S1.

(2.5)

Together the equations (2.4) and (2.5) give a Lotka-Volterra competition system for
S1 andP2 providedC22 is large andC11B21/C22 is small. One way thatC11B12/C22
could be small is if B12 is small, which would mean the competitive impact of spe-
cies 1 on species 2 is small. In that case the main contribution involving C11 to
equation (2.5) is the term −C11P2S1.

Scenario 2. In this scenario we assume that infected individuals of species 2 do
not give birth while infected but may recover from the infection. We also assume
that any individual in species 2 will contact only some fixed number of other in-
dividuals per unit time, whatever the population may be, so that the contact rate
between susceptible and infected individuals now depends on the fraction of the
population which is infected rather than the total number of infected individuals.
Hence, in this scenario, C22 = c22/P2 and we have A2 = R = recovery rate of
infected individuals, A2 = a2 − d2 where a2 = birth rate of uninfected individuals
of species 2; d2 = death rate of infected or uninfected individuals of species 2 so
M2 = R + d2. Thus, we have

dS2

dt
= (a2 − d2)S2 + RI2 − [B11S1 + B22P2]S2 − c22I2S2

P2

dI2

dt
= c22I2S2

P2
− [B11S1 + B22P2]I2 − RI2 − d2I2.

Adding these equations yields

dP2

dt
= a2S2 − d2P2 − [B11S1 + B22P2]P2 (2.6)

In this scenario the pseudo-equilibrium is I ∗
2 = (P2/c22)[c22 −R− d2 −B21S1 −

B22P2]. Using S2 = P2 − I ∗
2 gives S2 = (P/c22)[R+d2 +B21S1 +B22P2]. Using

that form in (2.6) yields

dP2

dt
=

[(
a2

c22
− 1

)
d2 + R

c22

]
P2 −

(
1 − a2

c22

)
[B21S1 + B22P2]P2. (2.7)

This will make sense as part of a Lotka-Volterra system for P2 and S1 provided
a2/c22 is small and R/c22 is large relative to d2. Again, these assumptions are
consistent with the hypotheses that the dynamics of the pathogen are rapid and its
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effects on species 2 are mild. If we assume the same sort of contact function for
species 1 as for species 2, the equation for S1 has C11 = c11/P2 so that we have

dS1

dt
= [A1 − c11 + (c11R/c22)+ d2(c11/c22)]S1

−([B11 − (c11/c22)B21]S1 + [(B12 − (c11/c22)B22)]P2)S1. (2.8)

In the cases that interest us c11 should be relatively large. For (2.8) to make sense
that requires some other assumptions, for example that R is large, c11/c22 is close
to 1, B12 is relatively large and B21 is relatively small. These are still consistent
with our general assumptions about the systems we are modeling.

2.3. Remarks on hypotheses

We can reasonably reduce the system (2.1) to a Lotka-Volterra competition system
for S1 and P2, at least for purposes of studying the persistence of S1, under the
detailed hypotheses of the scenarios described above. Related but different hypoth-
eses might lead to competition models with a slightly different structure. The key
assumptions appear to be:

1. the effects of the pathogen on species 2 are mild;
2. the rates of transmission and (if recovery is possible) recovery from infection are

large relative to the ecological birth and death rates and competition coefficients
in the system; and

3. in the absence of the pathogen the competitive impact of species 1 on species
2 is relatively weak.

Further discussion of models for species interactions where transmission of a patho-
gen between species is a factor are given in (Begon et al. 1992, Lyles and Dobson
1993).

2.4. Scaling and spatial modeling

For our treatment of spatial effects we begin with a Lotka-Volterra competition
system of the sort which appears in equations (2.4), (2.5) or (2.7), (2.8). We rescale
the variables representing the densities of uninfected individuals of species 1 and
all individuals of species 2 so that their carrying capacities are equal to 1, so that
in regions where both species are present the rescaled variables s1 and p2 satisfy
the Lotka-Volterra competition model

ds1

dt
= (r1 − s1 − α12p2)s1

(2.9)
dp2

dt
= (r2 − p2 − α21s1)p2.

In (2.9) the competition terms account for both ordinary competition and the effects
of pathogen transmission. The interactions are quantified by the coefficients αij .

We now turn to the spatial aspects of the model. We assume that there are two
bounded open planar habitat regions, �1 and �2, with species i inhabiting only
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�i , but that the intersection �E = �1 ∩ �2 represents an edge region or zone of
overlap where both species may be present. (Note that this formulation includes
many different possible geometric configurations for�1 and�2, ranging from the
case where �1 and �2 have only a small fraction of their edge regions in common
to the case in which one of the habitat patches is completely surrounded by the
other.) To model dispersal we use simple diffusion and denote the diffusion rate
of the ith species by Di . We allow the usual types of boundary conditions, where
some fraction (perhaps all or none) of the individuals that encounter the boundary
of their domain die and the remainder return to the domain.

Let ui(x, t) be the density of species i on�i . Because the species interact only
in the overlap region�E and because ui is not defined on�j (j �= i) except in�E ,
we need to introduce an expression that is equal to ui on �E and equal to zero on
�j\�E into the equation for uj to describe the interaction. To that end, we define

Ui(ui(x, t)) =
{
ui(x, t) on �E
0 on �j\�E, j �= i.

We can now formulate the model. We use the standard mathematical notation =
∂2/∂x2 + ∂2/∂y2 for the Laplace operator. We denote normal derivatives on ∂�i
by ∂/∂η. The model is

∂ui

∂t
= Di ui + (ri − ui − αijUj (uj ))ui on �i × (0,∞)

βi(x)ui + (1 − βi(x))∂ui
∂η

= 0 on ∂�i × (0,∞), (2.10)

i = 1, 2, j �= i.
The term βi(x) is assumed to take values in the interval [0, 1]. It represents the
fraction of individuals which die upon encountering the boundary. Thus, βi ≡ 1
denotes a lethal boundary (Dirichlet condition) while βi ≡ 0 denotes a reflect-
ing boundary (Neumann or no-flux condition). We shall always assume that �i is
bounded for i = 1, 2.

In what follows we shall analyze how the size of the edge region�E influences
the predictions of the model (2.11). Note that the model (2.11) is symmetric with
respect to i and j in its general form, so the characterization of the different roles
played by the two species will depend on our choices of the parameter values.

3. Mathematical preliminaries

Our purpose in this section is two-fold. First, we construct a mathematical frame-
work suitable for the analysis of the model we have formulated in Section 2. The
elements of the framework are well-known from the theories of dynamical systems
and partial differential equations. However, the assumption that the two species
being modelled inhabit distinct but overlapping domains lends a certain novelty
to the manner in which the elements of the framework are assembled. Once
the framework is constructed, we gather particular known results regarding sin-
gle-species reaction-diffusion equations and the spectra of elliptic operators that we
will need to implement the analysis in Section 4 which to the best or our knowledge
is original.
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3.1. The model as a semidynamical system

We must verify that our model is well posed and that it can be viewed as a semi-
dynamical system on an appropriate space, so that we can apply general abstract
results on persistence. Our model can be treated via minor extensions or modifica-
tions of standard results on parabolic systems, specifically as discussed in (Henry
1981, Hutson and Schmitt 1992, Pazy 1983) so we shall only sketch the necessary
arguments.

The essential steps in the analysis are to establish that the differential opera-
tors in (2.11) generate an analytic semigroup on an appropriate space, and then
to verify that the nonlinear terms have the appropriate mapping properties on that
space. Let Ai be the Laplace operator  on �i . Choose p large enough that the
Sobolev space W 2,p(�i) embeds in the space C1,ν(�i) of functions with Hölder
continuous first derivatives on �i . Define the domain of Ai as domAi = {u ∈
W 2,p(�i) : βi(x)u+ (1 − βi(x))∂u/∂η = 0 on ∂�i}.

Lemma 3.1. Assume that ∂�i is smooth and that βi(x) is smooth on each con-
nected component of ∂�i . Then Ai generates an analytic semigroup on Lp(�i).

Discussion. Since ∂�i and βi are smooth, it follows from standard elliptic a pri-
ori estimates (Agmon et al. 1959, Friedman 1976) that for all u ∈ domAi we have
‖u‖w2,p(�i)

≤ C(‖Aiu‖Lp(�i)+‖u‖Lp(�i))whereC does not depend on u. domAi
is dense in Lp(�i). It then follows as in (Friedman 1976, Part 1, Section 18) that
the operator Ai − λI satisfies inequalities implying that Ai generates an analytic
semigroup as in (Friedman 1976, Part 2, Section 2).

SinceAi generates an analytic semigroup, we can define fractional powersAαi of
Ai and use them to define norms on subspaces ofLp(�i) by ‖u‖α = ‖Aαi u‖Lp(�i).
(If we have pure Neumann boundary conditions, i.e. in the case where βi(x) ≡ 0 on
∂�i , then Ai is not invertible so we must use ‖u‖α = ‖Aαi u‖Lp(�i) + ‖u‖Lp(�i)).
The subspaces are defined by Xαi = {u ∈ Lp(�i) : ‖Aαi u‖Lp(�i) < ∞}. If we
take α sufficiently close to 1, thenXαi embeds in C1,v(�i). (See Henry 1981, Pazy
1983).

We can now define a space on which our model can be interpreted as a semi-
dynamical system. Let X = Xα1 × Xα2 where α ∈ (0, 1) is close enough to 1 that
Xαi embeds in C1,v(�i). Define A : X → Lp(�1) × Lp(�2) by A : (u1, u2) �→
(A1u1, A2u2). Since Ai generates an analytic semigroup on Lp(�i), A generates
an analytic semigroup on Lp(�1) × Lp(�2) which can be represented by letting
the semigroups generated by A1 and A2 act componentwise on (u1, u2). Define
Ui(ui) on �j , j �= i, by

Ui =
{
ui in �E
0 on �j\�E, j �= i.

The map Ui defines a bounded linear operator from Lq(�i) to Lq(�j ) for any
q ∈ [1,∞]. Define F : X → Lp(�1) × Lp(�2) by F : (u1, u2) �→ (u1[r1 −
u1 − α12U2(u2)], u2[r2 − u2 − α21U1(u1)]). (Since functions in X are also in
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C1,v(�1)× C1,v(�2), the map F is well defined and smooth.) We can now write
the model as

du

dt
= Au+ F(u) (3.1)

which can be re-written as

u(t) = etAu(0)+
∫ t

0
e(t−s)AF (u(s))ds. (3.2)

Since A generates an analytic semigroup and F maps bounded sets in X into
bounded sets in Lp(�1) × Lp(�2), we can apply the operator Aα to (3.2) as in
(Henry 1981) and use the standard estimate ‖AαetA‖ ≤ Ct−α to conclude that
if u(0) ∈ X then ‖Aαu‖Lp(�1)×Lp(�2) is bounded so that u(t) ∈ X. See (Henry
1981) for a detailed discussion. See also (Friedman 1976, Pazy 1983) for related
discussion. It then follows as in (Henry 1981) that the model (2.11), interpreted as
(3.2), generates a semiflow on X. To summarize, we have:

Theorem 3.2. Under the hypotheses of Lemma 3.1, the model (2.11) can be
given the abstract realizations (3.1) and (3.2). Under these realizations the model
generates a semiflow on a space X which embeds in C1,v(�1)× C1,v(�2).

Remarks. It follows as in (Friedman 1976, Henry 1981, Hutson and Schmitt 1992)
that the smoothing properties of the semigroup imply that bounded orbits of (3.1)
in X are precompact.

All of the terms in (2.11) are local, so the maximum principle and its various
extensions apply just as in the case of a standard reaction-diffusion system. In
particular, the system has the following properties:

Theorem 3.3. The model (2.11) is order preserving with respect to the ordering
where (u1, u2) ≤ (v1, v2) if and only if u1 ≤ v1 and u2 ≥ v2. The standard
positive cone as defined by X+ = {(u1, u2) ∈ X : ui > 0 on �i , ∂ui/∂η < 0
on the parts of ∂�i where βi(x) = 1, i = 1, 2} is forward invariant. The set
Y = {(u1, u2) ∈ X+

: ui ≡ 0 for some i} is also forward invariant. The semi-
flow maps intX+ ∪ Y into itself for t > 0. The system is point dissipative in
L∞(�1) × L∞(�2); dissipativity in X then follows via the smoothing properties
of the semigroup in (3.2).

Discussion. The order preserving properties of diffusive Lotka-Volterra models
for two competing species, or for more general systems of two reaction-diffusion
equations with competitive reaction terms, are well known (see Cosner and Lazer
1984, Hess 1991.) The invariance properties of the standard positive cone, the con-
struction of a metric space upon which the abstract theory of permanence can be
applied, and the dissipativity of the system, follow as in (Cantrell et. al. 1993a,
Hutson and Schmitt 1992).

Theorems 3.2 and 3.3 provide the basis for the application of the abstract no-
tions of persistence defined by permanence (Hutson and Schmitt 1992, Cantrell
et al. 1993a) and compressivity (Hess 1991). However, to apply those notions we
need to know more about the behavior of single species models which describe the
semiflow in the boundary of the positive cone. To classify the behavior of those
models and the full model we also need some background results on the principal
eigenvalues of certain elliptic operators.
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3.2. Eigenvalue problems and single species models

We now note the sorts of eigenvalue problems we must consider. Let m(x) belong
to L∞(�) for a bounded domain �; assume that the connected components of ∂�
are smooth and that β(x) is smooth on connected components of ∂� and takes
values in [0, 1]. Note that m(x) is allowed to change sign in �. We denote by
σ(�,D,m, β) the principal eigenvalue for the problem

D ψ +m(x)ψ = σψ in �

βψ + (1 − β)∂ψ
∂η

= 0 on ∂�;
(3.3)

i.e., the unique real value of σ for which (3.3) admits an eigenfunction ψ > 0 in
�. The existence of σ(�,D,m, β) in (3.3) follows from the classical variational
formulation of eigenvalue problems as given, e.g., in (Courant and Hilbert 1953).
In particular, σ(�,D,m, β) admits the following characterization: for β �≡ 1

σ(�,D,m, β)

= sup
u∈Z




−D
∫
�

|∇u|2dx −D
∮
∂�

(
β

1 − β
)
u2ds +

∫
�

m(x)u2dx

∫
�

u2dx


(3.4)

where Z is the completion in W 1,2(�) of the subspace {u ∈ C1(�) : u(x) =
0 for x ∈ ∂� with β(x) = 1}. In case β ≡ 1, the boundary integral no longer
appears and Z = W

1,2
0 (�). If β(x) ≤ β0 < 1, then Z = W 1,2(�). Relation (3.4)

implies that σ(�,D,m, β) is monotonically increasing with increasing m(x).
Let us denote by λ+

1 (�, β) the principal positive eigenvalue for the problem

− φ = λφ in �

βφ + (1 − β)∂φ
∂η

= 0 on ∂�;
(3.5)

i.e. the unique necessarily nonnegative value of λ for which (3.5) admits an eigen-
function φ > 0 in �. As its symbol indicates, the quantity λ+

1 (�, β) depends only
on the geometry of � and the boundary condition determined by β. It is a very
widely used quantity in mathematics and its applications. It is explicitly known for
a range of domains and boundary conditions and readily approximated when it is
not known explicitly. Moreover, it is easy to see that ifm in (3.3) is a constant then
σ(�,D,m, β) and λ+

1 (�, β) are related by the formula

σ(�,D,m, β) = m−Dλ+
1 (�, β) (3.6)

and that λ+
1 (�, β) is realized via the variational formula

λ+
1 (�, β) = inf

u∈Z




∫
�

|∇u|2dx +
∮
∂�

β

1 − β u
2ds

∫
�

u2dx


 .
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When m in (3.3) is no longer a constant, (3.6) no longer applies. However, there is
sometimes an extension of λ+

1 (�, β) to weighted eigenvalue problems of the form

− φ = λm(x)φ in �

β(x)φ + (1 − β(x)φ = 0 on ∂�

(3.7)

that is very useful in mathematical analysis and which sometimes occurs in the
mathematical biology literature, e.g., (Cantrell and Cosner 1991). Indeed, the re-
sults of this article could be expressed in terms of this quantity, which we denote as
λ+

1 (�,m, β). However, since the σ formulation is more readily interpreted biolog-
ically as an average growth rate over a domain, we will use only the σ formulation
and the quantity λ+

1 (�, β) in this article.
To be specific, λ+

1 (�,m, β) denotes the principal positive eigenvalue of (3.7)
when one exists. It is well-known (see, for example, (Manes and Micheletti 1973,
Hess and Kato 1980, Brown and Lin 1980, Hess 1991)) that λ+

1 (�,m, β) exists
and is monotonically decreasing asm increases whenm(x) > 0 on an open subset
of � and β �≡ 0. If β ≡ 0, the additional condition∫

�

m(x)dx < 0 (3.8)

is required to assert the existence of λ+
1 (�,m, β).

It is immediate that if β �≡ 0, λ+
1 (�, β) = λ+

1 (�, 1, β) and that λ+
1 (�, 0) = 0.

While the quantities σ(�,D,m, β) and λ+
1 (�,m, β) can no longer be related by

an explicit formula such as (3.6) whenm is variable on�, it is nevertheless the case
that a useful relationship between the two quantities does exist and may be stated
as follows.

Lemma 3.4. Assume m ∈ L∞(�) and that m(x) > 0 for x in an open subset
of �. If β �≡ 0 or if β ≡ 0 and (3.9) holds, then σ(�,D,m, β) > 0 if an only

λ+
1 (�,m, β) <

1

D
. If β ≡ 0 and the inequality in (3.9) is strictly reversed, then

σ(�,D,m, β) > 0.

Discussion. The case β ≡ 0 is proved in (Senn 1983). The case β ≡ 1 is discussed
briefly in (Cantrell and Cosner 1991); see also Proposition 2.2 in (Belgacem and
Cosner 1995). Some related results are given in (Hess 1991).

Since the equation

D ψ + rm(x)ψ = σψ in �

β(x)ψ + (1 − β(x))∂ψ
∂η

= 0 on ∂�

is evidently equivalent to

D

r
 ψ +m(x)ψ = σ

r
ψ in �

β(x)ψ + (1 − β(x))∂ψ
∂η

= 0 on ∂�
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for r > 0, it follows from Lemma 3.4 that σ(�,D, rm, β) > 0 ⇔ λ+
1 (�,m, β) <

r

D
.

3.3. Diffusive logistic equations

We can now state the basic existence and uniqueness result for diffusive logistic
equations. The sort of equations we will need to consider have the form

∂u

∂t
= D u+m(x)u− u2 in �× (0,∞)

β(x)u+ (1 − β(x))∂u
∂η

= 0 on ∂�× (0,∞)
(3.9)

(Recall that any constant coefficient in the u2 term may be eliminated by rescaling.)

Theorem 3.5. Assume the hypotheses of Lemma 3.1 are satisfied and thatm(x) ∈
L∞(�) with m(x) > 0 on some open subset of �. If σ(�,D,m, β) ≤ 0, all
positive solutions to (3.9) approach zero as t → ∞, while if σ(�,D,m, β) > 0
then there is a unique positive equilibrium u∗ of (3.9) which is globally attracting
among positive solutions. If m(x) is smooth on any open subdomain �0 of � with
�0 ⊆ �, then as D → ∞, u∗ → m(x) uniformly on �0.

Mathematical discussion. This result is widely known, although it is usually for-
mulated in different terms in the mathematical literature. Recall from Lemma 3.4
that σ(�,D,m, β) > 0 is equivalent to λ+

1 (�,m, β) < 1/D, so that the condi-
tion σ(�,D,m, β) ≤ 0 in the statement of the result is given by λ+

1 (�,m, β) ≥
1/D in the mathematical literature. Likewise, σ(�,D,m, β) > 0 is replaced with
λ+

1 (�,m, β) < 1/D. The case β ≡ 1 is treated in (Cantrell and Cosner 1989)
in detail. Related results are given in (Senn 1983) for β ≡ 0 and (Hess 1991)
for general cases including periodic-parabolic logistic equations. A fairly detailed
treatment of the case β ≡ 0 is given in (Cantrell et al. 1996). In cases where β �≡ 0
the analysis is essentially the same as in (Cantrell and Cosner 1989). The results
on the behavior of u∗ as D → 0 is proved in the case β ≡ 1 in (Cantrell and
Cosner 1989) but the analysis is local on�0 so the boundary conditions on ∂� are
irrelevant, since �0 ⊂ �.

Lemma 3.6. The equilibrium u∗ of (3.9) depends continuously in the norm of
L∞(�) on β and is monotonically increasing with respect to β.

Proof. (Sketch) Suppose that u∗(β1) and u∗(β2) are equilibria of (3.9) for β =
β1(x) and β = β2(x) respectively, and that on ∂� we have β1 > β2. It is easy to
see that on ∂� we must have

β2u
∗(β1)+ (1 − β2)

∂u∗

∂η
(β1) ≤ 0

so that u∗(β1) is a subsolution of the equilibrium equation for (3.9) with β = β2.
Since any sufficiently large constant is a supersolution and since u∗(β2) is the
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unique solution, we must have u∗(β2) ≥ u∗(β1). Suppose now that we fix β(x)
and choose any sequence {βk(x)} which converges uniformly and monotonically to
β(x). Suppose the sequence is increasing; the decreasing case is similar. We have
that the sequence {u∗(βk)} is decreasing and is bounded below by u∗(β). Thus, it
must have a convergent subsequence. Elliptic regularity implies that a subsequence
must converge to an equilibrium of (3.9); the boundary conditions converge to those
of u∗(β), so since u∗(β) is the unique equilibrium with those boundary conditions
we must have the subsequence converging to u∗(β). The entire sequence must then
converge to u∗(β) by monotonicity. Since the original sequence is arbitrary, this
establishes continuity of u∗ with respect to β.

3.4. Persistence and possible extinction

We can now give criteria for the persistence of the system (2.11).

Theorem 3.7. Suppose that the hypotheses of Lemma 3.1 are satisfied. Suppose
further that for i = 1, 2

σ(�i,Di, ri, βi) > 0. (3.10)

Let u∗
i denote the unique positive equilibrium of

∂ui

∂t
= Di u+ [ri − ui]ui in �i × (0,∞)

βiui + (1 − βi)∂ui
∂η

= 0 on ∂�i × (0,∞)
(3.11)

Let Ui(u
∗
i ) =



u∗
i on �E

0 on �j\�E, j �= i.
The system (2.11) is permanent and compressive if the principal eigenvalues for
the problems

Di ψ + [ri − αijUj (u∗
j )]ψ = σψ in �i

βiψ + (1 − βi)∂ψ
∂η

= 0 on ∂�i,

(3.12)

namely σ(�i,Di, ri − αijUj (u∗
j ), βi), are positive for i = 1, 2. If σ(�i,Di, ri −

αijUj (u
∗
j ), βi) ≤ 0 for some i, then ui → 0 as t → ∞ if uj (x, 0) ≥ u∗

j (x) and
ui(x, 0) is sufficiently small.

Discussion. Theorem 3.7 is essentially a version of Theorem 5.7 of (Cantrell et al.
1993a) and the results in (Hess 1991, section IV.33) adapted to the system (2.11).
An alternative approach to permanence is discussed in (Cantrell et al. 1993b); see
also (Hutson and Schmitt 1992, Cosner 1994). The condition (3.10) is required
so that each species can persist even if the other is absent. The condition that the
principal eigenvalue is positive in (3.12) implies that the state where uj = u∗

j and
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ui = 0 is unstable, i.e. if ui is small but positive for t = 0 then ui will increase.
Thus, the condition implies invasibility by ui when uj is present at equilibrium.
In that sense Theorem 3.7 is a precise formulation of the idea that invasibility
implies coexistence. Conversely, if σ(�i,Di, ri − αijUj (u∗

j ), βi) ≤ 0, then the
state ui = 0, uj = u∗

j is locally stable, so if uj ≥ u∗
j and ui is small at t = 0

then ui → 0 as t → ∞. (If ui(x) is small enough that the trajectory starting at
ui = ui(x), uj = u∗

j (x) approaches ui = 0, uj = u∗
j as t → ∞, then the same

will be true for any trajectory with ui(x, 0) ≤ ui(x) and uj (x, 0) ≥ u∗
j (x) by the

order preserving property of (2.11).)

4. Analysis

4.1. Conditions for permanence

The particular species interactions described in Sections 1 and 2 motivating the
formulation of (2.11) have the feature that only one of the species (species 1) risks
extinction due to its interaction with the other species in the overlapping portion�E
of the two habitats �1 and �2. In this section, we begin by capturing this feature
via an additional assumption on the parameters in (2.11) which guarantees (via
Theorem 3.7) that the model predicts persistence of species 2 for any choice of�E
and boundary condition on �1. We then analyze how the intrinsic growth rates r1
and r2, diffusion coefficients D1 and D2, interaction coefficient α12, overlapping
region �E , and boundary conditions on �1 and �2 affect the predictions of (2.11)
regarding the persistence of species 1. Before proceeding, some observations are in
order. First, under the assumption that species 2 survives in the absence of species 1,
we shall see that the condition we place on the parameters of (2.11) to guarantee the
persistence of species 2 independent of choice of�E and boundary conditions on�1
can be regarded as the requirement that the coefficient α21 measuring the negative
effect of species 1 on species 2 be sufficiently small. Second, an examination of
(3.11) and (3.12) in Theorem 3.7 reveals that α21 plays no role in determining the
logistic equilibrium for species 2 in the absence of interactions between species,
and consequently in deciding whether species 1 can invade�1 when species 2 is at
its logistic equilibrium in�2. Consequently, the additional assumptions on α21 that
guarantee that the model predicts persistence of species 2 independent of �E and
boundary condition on �1 do not affect the generality of our analysis concerning
the persistence of species 1.

We now derive a condition for persistence of species 2 independent of �E and
boundary condition on�1. We have from (3.12) that the model predicts that species
2 persists if the principal eigenvalue of the problem

D2 ψ + [r2 − α21U1(u
∗
1)]ψ = σψ in �2

β2ψ + (1 − β2)
∂ψ

∂η
= 0 on ∂�2

(4.1)

is positive, i.e. σ(�2,D2, r2−α2U1(u
∗
1), β2) > 0. The maximum principle (Protter

and Weinberger 1967) implies that u∗
1 ≤ r1 and hence that U1(u

∗
1) ≤ r1χE ≤ r1

on �2. It follows that σ ≥ ρ where ρ is the principal eigenvalue of
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D2 w + [r2 − α21r1]w = ρw in �2

β2w + (1 − β2)
∂w

∂η
= 0 on ∂�2

(4.2)

and so σ > 0 whenever ρ > 0. But now by (3.6) ρ = r2 −α21r1 −D2λ
+
1 (�2, β2).

We know from Lemma 3.6 that u∗
1 → r1 as β1 decreases to 0. Consequently, in

order for the model to predict persistence of species 2 for any choice of boundary
conditions on �1, and any choice of �E , we must require

r2 > α21r1 +D2λ
+
1 (�2, β2). (4.3)

With the assumption (4.3), Theorem (3.7) can be reduced to the following.

Corollary 4.1. Suppose (3.10) and (4.3) hold. Then (2.11) is permanent if and only
if the principal eigenvalue of the problem

D1 ψ + [r1 − α12U2(u
∗
2)]ψ = σψ in �1

β1ψ + (1 − β1)
∂ψ

∂η
= 0 on ∂�1,

(4.4)

is positive; i.e. σ(�1,D1, r1 − α12U2(u
∗
2),�1) > 0.

A condition sufficient for permanence in (2.11) may be obtained from Corollary
4.1 by replacing U2(u

∗
2) in (4.4) withM2χ�E (whereM2 = sup{u∗

2(x), x ∈ �E})
and requiring the positivity of the principal eigenvalue in the resulting boundary
value problem. So doing overstates the impact of species 2 on species 1 in the
model, in effect providing a “worst case scenario” for species 1.

As before, we know from the maximum principle that M2 ≤ r2. Let m ∈
[M2, r2] and consider

D1 w + [r1 − α12mχ�E ]w = ρw in �1

β1w + (1 − β1)
∂w

∂η
= 0 on ∂�1.

(4.5)

If the principal eigenvalue ρ of (4.5) is positive, we have permanence in (2.11)
by Corollary 4.1, as noted. We now examine (4.5) more closely, so as to interpret
the condition for permanence (i.e. ρ > 0) in terms of inequalities relating its
coefficients.

It follows directly from (3.4) that ρ satisfies

ρ = sup
u∈Z




−D1

∫
�1

|∇u|2dx −D1

∮
∂�1

(
β1

1 − β1

)
u2ds +

∫
�1

(r1 − α12mX�E )u
2dx

∫
�1

u2dx



(4.6)
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where the space of test functions Z and the interpretation of the boundary integral
are as in the discussion following (3.4). It is immediate from (4.6) that

ρ > sup
u∈Z

(
−D1

∫
�1

|∇u|2dx −D1

∮
∂�1

β

1 − β1
u2ds

)
∫
�1

u2dx

+ (r1 − α12m)

= r1 −D1λ
+
1 (�1, β1)− α12m.

We now have the following result.

Corollary 4.2. Suppose the conditions of Corollary 4.1 hold and let

r1 > D1λ
+
1 (�1, β1)+ α12m, (4.7)

where m ∈ [M2, r2], M2 as before. Then (2.11) is permanent for any choice of
overlapping region �E .

A somewhat more explicit sufficient condition for permanence than (4.7) fol-
lows from (4.5) if β1(x) < 1 on ∂�1. In such a case w in (4.5) does not vanish on
�, and (4.5) can be written

D1
 w

w
+ [r1 − α12mX�E ] = ρ (4.8)

in�1. NowD1
 w

w
= D1

[
div

(∇w
w

)
+ |∇w|2

w2

]
in�1 and

1

w

∂w

∂η
= −β1

1 − β1
on

∂�1. Consequently, if we integrate (4.8) and apply the Divergence Theorem, we
get that

ρ = r1 + D1

|�1|
[∫
�1

|∇w|2
w2

dx −
∫
∂�1

β1

1 − β1
ds

]
− α12m

|�E |
|�1| . (4.9)

We now have the following result.

Theorem 4.3. Suppose the conditions of Corollary 4.1 hold and that β1(x) < 1
on �1. Then (2.11) is permanent if

r1 > D1

∫
∂�1

β1

1 − β1
ds/|�1| + α12m

|�E |
|�| . (4.10)

Remarks. (i) If β1 is constant, (4.10) simplifies to

r1

D1
>

β1

1 − β1

|∂�1|
|�1| + α12m

D1

|�E |
|�1| , (4.11)

delineating rather clearly relationships among the ratio of intrinsic rate of growth
to rate of diffusion of species 1, boundary conditions on �1, the geometry of �1,
impact of species 2 on species 1 and relative size of �E within �1 sufficient to
guarantee permanence. Note in particular that when β = 1/2, the first term on the
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right hand side of (4.11) becomes the perimeter to area (or surface area to volume)
ratio.

(ii) The two sufficient conditions for permanence (4.7) and (4.10) may be viewed
as complementary to each other. Formula (4.10) is certainly more explicit in show-
ing relationships among system parameters sufficient to guarantee permanence. It
also takes the size of the overlapping region �E relative to the size of �1 into

account. If�E is small relative to�1, then α12m
|�E |
|�1| is much smaller than α12m.

On the other hand, if we let v be the eigenfunction for the eigenvalue problem
corresponding to λ+

1 (�1, β1) and compute as in (4.8), we obtain

∫
∂�1

β1

1 − β1
ds

|�1| = λ+
1 (�1, β1)+ 1

|�1|
∫
�

|∇v|2
v2

,

so that
∫
∂�1

β1
1−β1

ds

|�1| > λ+
1 (�1, β1) always. As β1 → 0, the corresponding eigen-

function v tends to a constant, so that lim
β1→0

∫
∂�1

β1
1−β1

ds

|�1| = limβ1→0λ
+
1 (�1, β1) =

0. Consequently, the boundary condition/geometry of habitat terms in the two
sufficient conditions for permanence are comparable for β1 small. However,

limβ1→1

∫
∂�1

β1
1−β1

ds

|�1| = +∞ while limβ1→1λ1(�1, β1) = λ1(�1, 1), so that (4.7) is
a far less restrictive criterion for permanence when β is near 1. Indeed, (4.7) has
the advantage of being applicable for any admissible boundary condition on �1.

(iii) When both habitats have reflecting boundaries, i.e., when both β1 and β2
equal 0, (4.11) simplifies in a manner worth noting. In this case, u∗

2 ≡ r2, so that
[M2, r2] = {r2} and (4.11) becomes the requirement

r1 > α12r2
|�E |
|�1| . (4.12)

(iv) To apply the preceding results to real biological populations, researchers
would have to quantify a variety of model parameters. These include 1) the popu-
lation growth and dispersal rates of the focal species, 2) population densities and
per capita impacts of the reservoir species, 3) the relative sizes of the edge habitat
and principal habitat of the focal species, and 4) measures of the size and relative
hostility of the boundary of the focal species’ habitat. Though they are numerous,
each of these parameters could be at least approximated through extensive field
work. For example, the hostility parameter β1 could be determined by quantifying
the fraction of individuals of the focal species that permanently emigrate from its
principal habitat. Consequently, we eventually hope to apply our results to real
populations. For now, however, we explore a fictitious example.

Consider a series of rectangular blocks of habitat, each inhabited by the focal
species. Furthermore, the outer portion of each habitat block constitutes edge hab-
itat that is also inhabited by the reservoir species. The habitat blocks differ among
themselves in both the hostility of their boundaries and in the relative sizes of
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the edge habitat. Such an array of habitat blocks would be a plausible representa-
tion of many ecologically heterogeneous landscapes, such as a forested landspace
subjected to clearcutting.

To ensure permanence within a given patch, the ratio of population growth to
dispersal for the focal species must exceed the critical threshold given in Eq. 4.11.
This threshold reflects that the focal species must contend with the dual negative
effects of edge hostility and disease-mediated competition from the reservoir spe-
cies to persist. Whether the focal species can do so successfully or not will contribute
to its presence or absence from different patches.

Figure 1 demonstrates how the critical threshold ratio becomes more stringent
for patches featuring increased boundary hostility or increased dominance by edge
habitat. Note that increasing edge hostility has a nonlinear effect and that the im-
portance of its effect is most pronounced in small patches (i.e., large perimeter to
area ratio). In contrast, increasing either the relative extent of the edge habitat or
the total impact of the reservoir species on the focal species (quantified via the term
α∗

12m) would have linear effects on the critical threshold in Eq. 4.11. Consequently,
patches with a low density of the reservoir species spread over a large edge region
could exhibit comparable disease-related effects as patches with a high density of
the reservoir species concentrated within a small edge habitat. Interestingly, both
disease-related factors would have relatively stronger influences in large patches,
where the consequences of boundary hostility would be lessened (Fig. 1A).

4.2. Extinction results

If σ < 0 in Corollary 4.1, so that permanence fails for (2.11), it is not necessarily
the case that any componentwise positive solution (u1, u2) of (2.11) has the prop-
erty that u1 → 0 as t → ∞. However, by imposing further restrictions on the
parameters of (2.11), we may guarantee extinction of species 1.

Let (u1, u2) be a componentwise positive solution of (2.11). Then

∂u1

∂t
≤ D1 u1 + (r1 − u1)u1 in �1 × (0,∞)

β1u1 + (1 − β1)
∂u1

∂η
= 0 on ∂�1 × (0,∞).

(4.13)

It follows from (3.10), (4.13), the method of upper and lower solutions and
Theorem 3.5 that for any ε > 0, there is a t (ε) > 0 so that if t ≥ t (ε) and
x ∈ �1, then u1(x, t) < r1 + ε. As a consequence, u2(x, t) is an upper solution to

∂u
¯ 2

∂t
= D2 u

¯ 2 + (r2 − α21(r1 + ε)− u
¯ 2)u¯ 2 on �2 × (t (ε),∞)

β2u
¯ 2 + (1 − β2)

∂u
¯ 2

∂η
= 0 on ∂�2 × (t (ε),∞)

(4.14)

By (4.3), r2 − α21(r1 + ε) > D2λ
+
1 (�2, β2) for ε > 0 and sufficiently small. In

such a case, δφ is a lower solution for δ > 0 and sufficiently small, where φ > 0
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Fig. 1. Effects of edge habitat on species permanence in the face of a disease threat. Plotted
surfaces are the critical values of r1/D1 (Eq. 4.11) that must be exceeded for the species to
be permanent despite exposure to a pathogen in the edge region �E in large habitat patches
(A: small perimeter to area ratio) and small habitat patches (B: large perimeter to area ratio).
Note that in large patches the critical value of r1/D1 is most sensitive to the relative size
of �E (except for patches with very hostile boundary conditions [i.e., high β1]). whereas
in small patches increasing hostility of the patch boundary quickly swamps the effects of
edge-mediated disease transmission. For both panels, we set the term α12m

D1
= 0.25.
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is an eigenfunction corresponding to λ+
1 (�2, β2). Theorem 3.5 and the method of

upper and lower solutions imply that there is a t(ε) > t(ε) so that for t ≥ t(ε) and
x ∈ �2,

u2(x, t) ≥ (1 − ε)u∗
2(�2,D2, r2 − α21(r1 + ε)) , (4.15)

where u∗
2(�2,D2, r2 −α21(r1 + ε)) denotes the unique globally attracting positive

equilibrium to (4.14) (i.e., (3.9) with� = �2,D = D2, andm = r2 −α21(r1 +ε))
whose existence is guaranteed by (4.3) and Theorem 3.5 for ε > 0 and sufficiently
small.

Using (4.15), we have that u1 is a lower solution to

∂u1

∂t
= D1 u1 + [r1 − α12U2((1 − ε)u∗

2(�2,D2, r2 −α21(r1 + ε)))− u1]u1

in �1 × (t(ε),∞)

β1u1 + (1 − β1)
∂u1

∂η
= 0 on ∂�1 × (t(ε),∞) .

(4.16)

Hence u1(x, t) ≤ ũ1(x, t), where ũ1(x, t) is the unique solution to (4.16) satisfying

u1(x, t(ε)) = ũ1(x, t(ε))

on�1. If σ(�1,D1, r1 −α12U2(u
∗
2(�2,D2, r2 −α21r1)), β1) < 0, then σ(�1,D1,

r1 − α12U2((1 − ε)u∗
2(�2,D2, r2 − α21(r1 + ε))), β1) < 0 for ε > 0 and suffi-

ciently small. (All the relevant quantities depend continuously on ε; see (Cantrell
and Cosner 1993, 1996, 1998). In this case Theorem 3.5 implies that ũ1 → 0 as
t → ∞, and hence so does u1.

We now have the following result.

Theorem 4.4. Suppose that (3.10) and (4.3) hold. Then if

σ(�1,D1, r1 − α12U2(u
∗
2(�2,D2, r2 − α21r1)), β1) < 0 (4.17)

any componentwise positive solution (u1, u2) to (2.11) has the property thatu1 → 0
as t → ∞.

Remark. Theorem 3.5 implies that lim
D2→0

u∗
2(�2,D2, r2 − α21r1) = r2 − α21r1

uniformly on any open subdomain � of �2 with the property that � ⊆ �2.
Consequently, (4.17) will hold (and hence the model predicts the extinction of
species 1) for D2 small provided

σ(�1,D1, r1 − α12(r2 − α21r1)χ�E , β1) < 0 . (4.18)

Condition (4.18) is satisfied in turn provided
D1λ

+
1 (�1, β1)

r1 − α12(r2 − α21r1)
=D1λ

+
1 (�1, r1−

α12(r1 − α21r1), β1) > 1 and |�1| − |�E | is small.

Remark. Related methods and results are discussed briefly in (Cantrell et al.
1993b) and in some detail and generality in (Cantrell and Cosner 1996).
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4.3. Alternate scenario

We noted a secondary modeling scenario in Sections 1 and 2 which again employed
(2.11). The local interactions between the two species, as measured by α12 and α21,
are the same as before, with α12 > α21. In this model, however, species 2 is no
longer assumed immune to an extinction threat, and we consider the efficacy of
managing the impacts of species 2 on species 1 by controlling the population of
species 2 in the overlapping region �E .

We start with a situation in which β2 is at or near 0 so that the boundary of
species 2’s region is almost completely reflecting. In this case, u∗

2 ≈ r2 essentially
independent of D2. If r1,D1, α12 and β1 are left alone, reducing u∗

2|�E is the only
means available of reducing the impact of species 2 on species 1. We know from
Lemma 3.8 that u∗

2 is reduced if β2 is increased. With this knowledge in mind, let’s
assume that β2 is increased along ∂�2 ∩ �E so that β2|∂�2∩�E ≈ 1 and that β2
is left unchanged along the remainder of ∂�2, and then examine the ramifications
of this assumption. Three basic outcomes emerge, depending upon a combination
of the diffusivity of species 2 and the relative size of ∂�2 ∩ �E compared to the
whole of ∂�2.

The first basic possibility is thatD2 is small. In this case, there is a sharp bound-
ary layer dropoff of u∗

2 near ∂�2 ∩�E , as noted in Theorem 3.7. However, as also
noted in Theorem 3.7, u∗

2 will still be approximately equal to r2 in the vast majority
of the interior of �2, including �E . In this scenario, the persistence of species 2 is
not at risk, but the impact of species 2 on species 1 is not significantly reduced.

Alternatively, if the diffusion rate for species 2 is high, then u∗
2 is reduced sig-

nificantly in�E , and the impact of species 2 on species 1 is also reduced. However,
it is also important to assess whether the reduction imperils the survival of species
2 in �2. If ∂�2 ∩�E is insignificant in size when compared to the whole of ∂�2,
then u∗

2 should remain near r2 throughout much of�2 and does not face an extinc-
tion threat. However, if ∂�2 ∩�E constitutes a large enough portion of ∂�2, then
increasing β2 toward 1 on ∂�2 ∩�E whenD2 is high reduces u∗

2 significantly not
just in �E but throughout much of �2. Indeed, in this case, if D2 is large enough
then u∗

2 = 0 and hence species 2 is driven to extinction.

5. Conclusions

The model we have analyzed here provides a means of investigating the dynam-
ics of a variety of ecological scenarios in which edge habitats help determine the
persistence or extinction of interacting species. As outlined in the introduction,
ecologists have studied at least two such scenarios in detail. The first or “remnant
population” case is most applicable to situations in which threatened species in
remnant patches of habitat face an added risk of extinction due to the transmission
of diseases or other pathogens from reservoir species. Such reservoir species chiefly
reside outside the remnant habitats but come in contact with the threatened species
in edge regions. As we have outlined here, the persistence of the remnant species is
dependent upon several factors with clear ecological interpretations. As is common
to many partial differential equation formulations of population dynamics (Skel-
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lam 1951, Kierstead and Slobodkin 1953, Okubo 1980, Cantrell and Cosner 1991)
the ratio of a species’ intrinsic rate of increase to its diffusion rate is once again
a key factor in our model. In particular, this ratio must exceed a threshold value
which varies among habitats, but is dependent upon 1) the lethality of the habitat
boundaries, 2) the geometry of the habitat patch edge region in question (including,
but not limited to, the habitat’s perimeter-to-area ratio and size of the edge region
relative to the species’ entire habitat), and 3) the severity of the negative impacts
the remnant species suffers because of its interactions with the reservoir species in
the edge region.

The second major case investigated here was in many ways analogous to the
brucellosis example outlined earlier. The brucellosis case features a key departure
from the remnant population case: we eliminated our assumption that the disease-
harboring species (e.g., bison in the brucellosis case) was immune to extinction
and sought to investigate the extent to which increased mortality of that species in
the edge region could lead to its extinction throughout its habitat. In this second
analysis we found that if the dispersal rate of the disease-harboring species was
small, then even the imposition of highly lethal boundary conditions in the edge
region (e.g., shooting of dispersing bison) will have little impact on the reservoir
species as a whole. In contrast, if the dispersal rate of the reservoir species was
high, then the population might well be at risk of extinction due to edge-related
mortality, but only if the boundary of the edge region (i.e., the lethal boundary)
constituted a large enough fraction of the entire habitat boundary for that species.

Taken together these mathematical results suggest that in ecological systems
where edge-mediated transmission of pathogens among species are suspected to
play important roles (e.g. Anderson 1972, Brittingham and Temple 1983, Snyder
et al. 1987, Dobson and Meagher 1996), investigations of species’ reproductive
rates, disease impacts, and, in particular, the frequency of cross-edge dispersal for
a given patch geometry, would provide valuable data for assessing whether such
factors need to be dealt with in detail by conservation managers.
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